铜绿假单胞菌胞质外功能σ因子研究进展

蔡泽琼, 陈学红, 白芳

中国药学杂志 ›› 2021, Vol. 56 ›› Issue (4) : 257-263.

PDF(1922 KB)
PDF(1922 KB)
中国药学杂志 ›› 2021, Vol. 56 ›› Issue (4) : 257-263. DOI: 10.11669/cpj.2021.04.001
综述

铜绿假单胞菌胞质外功能σ因子研究进展

  • 蔡泽琼, 陈学红, 白芳*
作者信息 +

Research Progress of Extracellular Function Sigma Factor in Pseudomonas aeruginosa

  • CAI Ze-qiong, CHEN Xue-hong, BAI Fang*
Author information +
文章历史 +

摘要

铜绿假单胞菌(Pseudomonas aeruginosa)是一种重要的人类条件致病菌,该菌具有多重耐药性,常在临床上引发难治性、反复性感染,是公认的抗感染治疗难点。铜绿假单胞菌在感染人类宿主的过程中,要不断调整自身的基因表达谱以适应宿主环境,这一适应性调控往往由胞质外功能(extracellular function, ECF)σ因子介导。对ECFσ因子的深入研究有助于揭示铜绿假单胞菌的感染机制和耐药机制。笔者对铜绿假单胞菌中ECF σ因子的结构、成员、功能、调控机制、研究方法这几方面进行综述,为铜绿假单胞菌ECF σ因子的研究提供理论借鉴。

Abstract

Pseudomonas aeruginosa is an important pathogenic bacteria of human. It is highly resistant to multiple antibiotics, often causes refractory and recurrent infectious diseases, and has been recognized as a treatment challenge in clinic. During infection, P. aeruginosa constantly adjusts its gene expression profile to adapt to the host environment, which is usually mediated by extracellular function (ECF) σ factor. An in-depth study of the ECF σ factor will help to reveal the mechanisms of infection and drug resistance of P. aeruginosa. In this paper, the structure, membership, function, regulatory mechanism and research METHODS of ECF σ factor in P. aeruginosa are reviewed, which provides a theoretical reference for study of ECF σ factor in P. aeruginosa.

关键词

铜绿假单胞菌 / 胞质外功能σ因子 / 反σ因子

Key words

Pseudomonas aeruginosa / ECF σ factor / anti-σ factor

引用本文

导出引用
蔡泽琼, 陈学红, 白芳. 铜绿假单胞菌胞质外功能σ因子研究进展[J]. 中国药学杂志, 2021, 56(4): 257-263 https://doi.org/10.11669/cpj.2021.04.001
CAI Ze-qiong, CHEN Xue-hong, BAI Fang. Research Progress of Extracellular Function Sigma Factor in Pseudomonas aeruginosa[J]. Chinese Pharmaceutical Journal, 2021, 56(4): 257-263 https://doi.org/10.11669/cpj.2021.04.001
中图分类号: R969.1   

参考文献

[1] SPIERS A J, BUCKLING A, RAINEY P B. The causes of Pseudomonas diversity[J]. Mol Microbiol, 2000, 146(10): 2345-2350.
[2] GILTNER C L, VAN SCHAIK E J, AUDETTE G F, et al. The Pseudomonas aeruginosa type IV pilin receptor binding domain functions as an adhesin for both biotic and abiotic surfaces[J]. Mol Microbiol, 2006, 60(3):813-813.
[3] STOVER C, PHAM X, ERWIN A, et al. Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen[J]. Nature, 2000, 406 (6799): 959-964.
[4] WANG M C, LIU C Y, SHIAO A S, et al. Ear problems in swimmers[J]. J Chin Med Assoc, 2005, 68 (8): 347-352.
[5] FLEISZIG S M, EVANS D J. The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa[J]. Clin Exp Optom, 2002, 85 (5): 271-278.
[6] WU D C, CHAN W W, METELITSA A I, et al. Pseudomonas skin infection[J]. Am J Clin Dermatol, 2011, 12 (3): 157-169.
[7] MORRISON A J, WENZEL R P. Epidemiology of infections due to Pseudomonas aeruginosa[J]. Rev Inf Dis, 1984, 6 (suppl 3): S627-S642.
[8] LAMBERT M L, SUETENS C, SAVEY A, et al. Clinical outcomes of health-care-associated infections and antimicrobial resistance in patients admitted to European intensive-care units: a cohort study[J]. Lancet Inf Dis, 2011, 11(1): 30-38.
[9] CHEVALIER S, BOUFFARTIGUES E, BAZIRE A, et al. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa[J]. Biochim Biophys Acta, 2018, 1862(7): 706-721.
[10] LLAMAS M A, IMPERI F, VISCA P, et al. Cell-surface signaling in Pseudomonas: stress responses, iron transport, and pathogenicity[J]. Microbiol Rev, 2014, 38 (4): 569-597.
[11] ASCENZI P, BOCEDI A, VISCA P, et al. Hemoglobin and heme scavenging[J]. IUBMB Life, 2005, 57 (11): 749-759.
[12] EL-GEBALI S, MISTRY J, BATEMAN A, et al. The Pfam protein families database in 2019[J]. Nucleic Acids Res, 2019, 47 (D1): D427-D432.
[13] LONETTO M A, DONOHUE T J, GROSS C A, et al. Discovery of the extracytoplasmic function σ factors[J]. Mol Microbiol, 2019, 112(2):348-355.
[14] BALASUBRAMANIAN D, KUMARI H, JARIC M, et al. Deep sequencing analyses expands the Pseudomonas aeruginosa AmpR regulon to include small RNA-mediated regulation of iron acquisition, heat shock and oxidative stress response[J]. Nucleic Acids Res, 2014, 42 (2): 979-998.
[15] DANIELA P, QIANG L, THORSTEN M. ECF σ factors with regulatory extensions: the one-component systems of the σ universe[J]. Mol Microbiol, 2019, 112(2): 399-409.
[16] STARON A, SOFIA H J, DIETRICH S, et al. The third pillar of bacterial signal transduction: classification of the extracytoplasmic function (ECF) σ factor protein family[J]. Mol Microbiol, 2009, 74(3): 557-581.
[17] LONETTO M A, BROWN K L, RUDD K E, et al. Analysis of the Streptomyces coelicolor sigE gene reveals theexistence of a subfamily of eubacterial RNA polymerase σ factors involved in the regulation of extracytoplasmic functions[J]. PNAS, 1994, 91(16): 7573-7577.
[18] BASTIAANSEN K C, IBANEZ A, RAMOS J L, et al. The Prc and RseP proteases control bacterial cell-surface signaling activity[J]. Environ Microbiol, 2014, 16(8):2433-2443.
[19] SCHWARTZ E C, SHEKHTMAN A, DUTTA K, et al. A full-length group1 bacterial σ factor adopts a compact structure incompatible with DNA binding[J]. Chem Biol, 2008, 15(10): 1091-1103.
[20] HAUGEN S P, ROSS W, GOURSE R L. Advances in bacterial promoter recognition and its control by factors that do not bind DNA[J]. Nat Rev Microbiol, 2008, 6 (7): 507-519.
[21] BEHRENDS V, RYALL B, WANG X, et al. Metabolic profiling of Pseudomonas aeruginosa demonstrates that the anti-sigma factor MucA modulates osmotic stress tolerance[J]. Mol Bio Syst, 2010, 6(3): 562-569.
[22] CAMPAGNE S, ALLAIN F H, VORHOLT J A. Extra cytoplasmic function sigma factors, recent structural insights into promoter recognition and regulation[J]. Curr Opin Structural Biol, 2015, 30(1): 71-78.
[23] BREIDENSTEIN E B, DE LA FUENTE-NUNEZ C, HANCOCK R E. Pseudomonas aeruginosa: all roads lead to resistance[J]. Trends Microbiol, 2011, 19(8): 419-426.
[24] BRENCIC A, LORY S. Determination of the regulon and identifiication of novel mRNA targets of Pseudomonas aeruginosa RsmA[J]. Mol Microbiol, 2009, 72(3): 612-632.
[25] MAILLARD A P, GIRARD E, ZIANI W, et al. The crystal structure of the anti-σ factor CnrY in complex with the σ factor CnrH shows a new structural class of anti-σ factors targeting extracytoplasmic function σ factors[J]. J Mol Biol, 2014, 426(12): 2313-2327.
[26] SHUKLA J, GUPTA R, THAKUR K G, et al. Structural basis for the redox sensitivity of the Mycobacterium tuberculosis SigK-RskA r-anti-r complex[J]. Acta Crystallogr D Biol Crystallogr, 2014, 70 (Pt 4): 1026-1036.
[27] LI S S, LOU X R, XU Y Y, et al. Structural basis for the recognition of MucA by MucB and AlgU in Pseudomonas aeruginosa[J]. FEBS J, 2019, 286(24): 4982-4994.
[28] HOLM L, LAAKSO L M. Dali server update[J]. Nucleic Acids Res, 2016, 44 (W1): W351-W355.
[29] BLANKA A, SCHULZ S, ECKWEILER D, et al. Identification of the alternative sigma factor SigX regulon and its implications for Pseudomonas aeruginosa pathogenicity[J]. J Bacteriol, 2014, 196(2): 345-356.
[30] LLAMAS M A, MOOIJ M J, SPARRIUS M, et al. Characterization of five novel Pseudomonas aeruginosa cell-surface signaling systems[J]. Mol Microbiol, 2008, 67(2): 458-472.
[31] LLAMAS M A, SPARRIUS M, KLOET R, et al. The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa[J]. J Bacteriol, 2006, 188(5): 1882-1891.
[32] GHEQUIRE M G K, ÖZTÜRKB B. A colicin M-type bacteriocin from Pseudomonas aeruginosa targeting the HxuC heme receptor requires a novel immunity partner[J]. Appl Environ Microbiol, 2018, 84(18): 1-11.
[33] PLETZER D, BRAUN Y, WEINGART H. Swarming motility is modulated by expression of the putative xenosiderophore transporter SppR-SppABCD in Pseudomonas aeruginosa PA14[J]. Antonie Van Leeuwenhoek, 2016, 109(6): 737-753.
[34] BEARE P A, FOR R J, MARTIN L W, et al. Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis[J]. Mol Microbiol, 2003, 47(1): 195-207.
[35] SCHULZ S, ECKWEILER D, BIELECKA A, et al. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk[J]. PLoS Pathogens, 2015, 11(3): e1004744.
[36] AHATOR S D, WANG J H, ZHANG L H. The ECF sigma factor PvdS regulates the type I-F CRISPR-Cas system in Pseudomonas aeruginosa[J]. Bio Rxiv, 2020. DOI: 10.1101/2020.01.31.929752.
[37] BASTIAANSEN K C, OTERO-ASMAN J R, LUIRINK J, et al. Processing of cell-surface signalling anti-sigma factors prior to signal recognition is a conserved autoproteolytic mechanism that produces two functional domains[J]. Environ Microbiol, 2015, 17(9): 3263-3277.
[38] DENT A T, MOURINO S, HUANG W, et al. Post-transcriptional regulation of the Pseudomonas aeruginosa heme assimilation system (Has) fine-tunes extracellular heme sensing[J]. J Biol Chem, 2019, 294(8): 2771-2785.
[39] BANIN E, VASIL M L, GREENBERG E P. Iron and Pseudomonas aeruginosa biofilm formation[J]. Proc Nat Acad Sci Am, 2005, 102(31): 11076-11081.
[40] LLAMAS M A, SAR A, CHU B C H, et al. A novel extracytoplasmic function(ECF) sigma factor regulates virulence in Pseudomonas aeruginosa[J]. PLoS Pathogens, 2009, 5(9): e1000572.
[41] FAURE L M, LLAMAS M A, BASTIAANSEN K C, et al. Phosphate starvation relayed by PhoB activates the expression of the Pseudomonas aeruginosa σVreI ECF factor and its target genes[J]. Microbiol, 2013, 159 (Pt 7): 1315-1327.
[42] QUESADA J M, OTERO-ASMAN J R, BASTIAANSEN K C, et al. The activity of the Pseudomonas aeruginosa virulence regulator σVreI is modulated by the anti-σ factor VreR and the transcription factor PhoB[J]. Front Microbiol, 2016, 7:1159.
[43] WOOD L F, OHMAN D E. Use of cell wall stress to characterize σ22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa[J]. Mol Microbiol, 2009, 72(1): 183-201.
[44] GICQUEL G, BOUFFARTIGUES E, BAINS M, et al. The extra-cytoplasmic function sigma factor SigX modulates biofilm and virulence-related properties in Pseudomonas aeruginosa[J]. PLoS One, 2013, 8(11): e80407.
[45] FLECHARD M, DUCHESNE R, TAHRIOUI A, et al. The absence of SigX results in impaired carbon metabolism and membrane fluidity in Pseudomonas aeruginosa[J]. Sci Rep, 2018, 8(1): 17212.
[46] MCGUFFIE B A, VALLET-GELY I, DOVE S L. σ factor and anti-σ factor that control swarming motility and biofilm formation in Pseudomonas aeruginosa[J]. J Bacteriol, 2015, 198(5): 755-765.
[47] RAMSEY D M, WOZNIAK D J. Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis[J]. Mol Microbiol, 2005, 56(2): 309-322.
[48] HAY I D, WANG Y, MORADALI M F, et al. Genetics and regulation of bacterial alginate production[J]. Environ Microbiol, 2014, 16(10): 2997-3011.
[49] XIE Z D, HERSHBERGER C D, SHANKAR S, et al. σ factor anti-σ factor interaction in alginate synthesis: inhibition of AlgT by MucA[J]. J Bacteriol, 1996, 178(16): 4990-4996.
[50] DAMRON F H, GOLDBERG J B. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa[J]. Mol Microbiol, 2012, 84(4): 595-607.
[51] QIU D, EISINGER V M, ROWEN D W, et al. Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa[J]. PNAS, 2007, 104(19): 8107-8112.
[52] QIU D, EISINGER V M, HEAD N E, et al. ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa[J]. Microbiol, 2008, 154(7): 2119-2130.
[53] WOOD L F, LEECH A J, OHMAN D E. Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of σ22(AlgT) and the AlgW and Prc proteases[J]. Mol Microbiol, 2006, 62(2): 412-426.
[54] LIMA S, GUO M S, CHABA R, et al. Dual molecular signals mediate the bacterial response to outer-membrane stress[J]. Science, 2013, 340(6134): 837-841.
[55] DAMRON F H, GOLDBERG J B. Proteolytic regulation of alginate overproduction in Pseudomonas aeruginosa[J]. Mol Microbiol, 2012, 84(4): 595-607.
[56] EDGAR R J, HAMPTON G E, GARCIA G P C, et al. Integrated activities of two alternative σ factors coordinate iron acquisition and uptake by Pseudomonas aeruginosa[J]. Mol Microbiol, 2017, 106(6): 891-904.
[57] GAINES J M, CARTY N L, TIBURZI F, et al. Regulation of the Pseudomonas aeruginosa toxA, regA and ptxR genes by the iron-starvation sigma factor PvdS under reduced levels of oxygen[J]. Microbiol, 2007, 153 (Pt 12): 4219-4233.
[58] BIELECKI P, JENSEN V, SCHULZE W, et al. Cross talk between the response regulators PhoB and TctD allows for the integration of diverse environmental signals in Pseudomonas aeruginosa[J]. Nucleic Acids Res, 2015, 43(13): 6413-6425.
[59] KINGSTON A W, SUBRAMANIAN C, ROCK C O, et al. A σW-dependent stress response in Bacillus subtilis that reduces membrane fluidity[J]. Mol Microbiol, 2011, 81(1): 69-79.
[60] FAURE L M, GARVIS S, BENTZMANN S, et al. Characterization of a novel two-partner secretion system implicated in the virulence of Pseudomonas aeruginosa[J]. Microbiol, 2014, 160 (Pt 9): 1940-1952.
[61] WOOD L F, OHMAN D E. Cell wall stress activates expression of a novel stress response facilitator (SrfA) under σ22 (AlgT/U) control in Pseudomonas aeruginosa[J]. Microbiol, 2015, 161 (Pt 1): 30-40.

基金

国家重点研发计划国际合作项目项目资助(2017YFE0125600)
PDF(1922 KB)

Accesses

Citation

Detail

段落导航
相关文章

/